Curvature Estimates for Submanifolds with Prescribed Gauss Image and Mean Curvature
نویسنده
چکیده
We study that the n−graphs defining by smooth map f : Ω ⊂ R n → R m , m ≥ 2, in R m+n of the prescribed mean curvature and the Gauss image. We derive the interior curvature estimates sup DR(x)
منابع مشابه
Mean Curvature Flow with Convex Gauss Image
We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملSome a priori bounds for solutions of the constant Gauss curvature equation
In this work, we give a priori height and gradient estimates for solutions of the prescribed constant Gauss curvature equation in Euclidean space. We shall consider convex radial graphs with positive constant mean curvature. The estimates are established by considering in such a graph, the Riemannian metric given by the second fundamental form of the immersion. r 2003 Elsevier Inc. All rights r...
متن کاملCurvature Estimates for Minimal Submanifolds of Higher Codimension
We derive curvature estimates for minimal submanifolds in Euclidean space for arbitrary dimension and codimension via Gauss map. Thus, SchoenSimon-Yau’s results and Ecker-Huisken’s results are generalized to higher codimension. In this way we improve Hildebrandt-Jost-Widman’s result for the Bernstein type theorem.
متن کاملEigenvalue estimates for submanifolds with locally bounded mean curvature
We give lower bounds estimates for the first Dirichilet eigenvalues for domains Ω in submanifolds M ⊂ N with locally bounded mean curvature. These lower bounds depend on the local injectivity radius, local upper bound for sectional curvature of N and local bound for the mean cuvature of M . For sumanifolds with bounded mean curvature of Hadamard manifolds these lower bounds depends only on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008